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Abstract

Purpose – This paper seeks to investigate the effect of a heat conducting vertical partition in an
enclosure on natural convection heat transfer and fluid flow using the polynomial-based differential
quadrature (PDQ) method.

Design/methodology/approach – The PDQ method with the non-uniform Chebyshev-Gauss-
Lobatto grid point distribution given below is used to transform the governing equations into a set of
algebraic equations. After numerical discretization, the resulting algebraic equations are solved by the
successive over-relaxation iteration method.

Findings – It is found that the average Nusselt number decreases towards a constant value as the
partition is distanced from the hot wall towards the middle of the enclosure. Furthermore, with
decreasing thermal conductivity ratio, the average Nusselt number first increases and passes a peak
point and then begins to decrease. The average heat transfer rate exhibits little dependence on the width
of the partition in the range taken into consideration in this study for the thickness of the partition.

Originality/value – This study offers more knowledge on natural convection in partitioned
enclosures.

Keywords Convection, Polynomials, Vortices
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Nomenclature
a ¼ first-order weighting coefficient
b ¼ second-order weighting coefficient
g ¼ gravitational acceleration, m2/s
H ¼ height of the enclosure, m
k ¼ thermal conductivity, W/(mK)
L ¼ width of the enclosure, m
N ¼ the number of partitions
Nu ¼ Nusselt number
Pr ¼ Prandtl number
p ¼ dimensionless pressure
R ¼ residual
Ra ¼ Rayleigh number
rk ¼ the ratio of thermal conductivities
rw ¼ dimensionless thickness of the partition
T ¼ dimensionless temperature
u ¼ dimensionless horizontal velocity
v ¼ dimensionless vertical velocity
w ¼ thickness of the partition, m
x ¼ dimensionless horizontal coordinate
y ¼ dimensionless vertical coordinate
a ¼ thermal diffusivity, m2/s

b ¼ thermal coefficient of volume
expansion, 1/K

DT ¼ dimensionless temperature difference
between the vertical walls of the
enclosure

y ¼ kinematic viscosity, m2/s
h ¼ outward direction normal to the surface
r ¼ density, kg/m3

v ¼ dimensionless vorticity
c ¼ dimensionless stream function

Subscripts
a ¼ average
b ¼ partition
C ¼ cold
f ¼ fluid
H ¼ hot
o ¼ evaluated at reference temperature

Superscripts
* ¼ dimensional quantities
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1. Introduction
Thermal convection in enclosures has many engineering applications, such as solar
collectors, energy transfer in rooms and buildings, cooling of electronic equipments
and energy storage. The problem of primary interest in the previous studies is that of a
simple rectangular enclosure[1]. However, real systems can differ significantly from a
simple rectangular enclosure model in certain respects. For example, in some building
applications, the transfer of heat through a vertical wall that separates adjacent rooms
must be coupled with natural convection in both rooms. Some of the electronic
equipments have a vertical wall separating two adjacent enclosures. In this case, the
model must include the association of these two enclosures communicating laterally
through the vertical wall. The case is similar for the solar collector where the
convection in the two adjacent air layers is coupled at the glazing. These and the
possible insulating effect of partitions are some of the reasons which encouraged
researchers to turn their attention to the study of convection in enclosures with
partitions.

Available studies of natural convection in a partitioned enclosure are concerned
mostly with the vertically partitioned case. Ho and Yih (1987) studied the problem
numerically for an air-filled enclosure with a centrally located partition and concluded
that the heat transfer rate attenuates considerably in a partitioned enclosure in
comparison with that observed in a non-partitioned enclosure. The results of Tong and
Gerner (1986) show that placing a partition exactly midway between the vertical walls
of an enclosure produces the greatest reduction in heat transfer. A study by Dzodzo
et al. (1999) on natural convection for an enclosure with a centrally located partition
indicates that partitioning the enclosure decreases the convective heat transfer up to 64
percent. Karayiannis et al. (1992) found that the finite conductivity of the partition
causes an increase in the Nusselt number. Acharya and Tsang (1985) found that
inclination angle of an enclosure with a centrally located partition has a strong
influence on the magnitude of the maximum Nusselt number. The numerical
examination of radiation convection interaction presented by Mezrhab and Bchir
(1998) shows that the radiation standardizes the temperature in the two parts of the
enclosure. Nishimura et al. (1998) studied, both experimentally and numerically, the
effect of multiple thin partitions and found that the average Nusselt number is
inversely proportional to (1 þ N), where N is the number of partitions.

The case where there is a partial or a horizontal partition also received some
consideration in the literature. For example, Ciofalo and Karayiannis (1991)
investigated the effect of using a fixed-width partition that protrudes centrally from
the end-walls of an enclosure on the natural convection. The efficacy of such a
partitioning was found to depend upon the aspect ratio and to strengthen as the value
of that ratio increases. Yucel and Ozdem (2003) concluded from their numerical
investigation on the natural convection in partially divided enclosures that increasing
the number of partitions and the height of the partitions causes the average Nusselt
number to decrease. Khan and Yao (1993), comparing steady natural convection of
water and air in a partially divided enclosure, suggest that the average Nusselt number
obtained for water is slightly higher than that obtained for air in the same conditions.
Convection in a partially divided enclosure with a combined horizontal temperature
and concentration gradient was investigated by Wang et al. (2000, 2004). Their results
indicate that the partition ratio has strong effects on both the mass transfer rate and
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the flow pattern. The effect of using a horizontal partition in an enclosure was analyzed
by Nag et al. (1993) and they found that the higher the value of the position of the
partition along the wall the more the attenuation in heat transfer.

It appears from the literature that the vertical partitions generally taken into
consideration in the studies related to natural convection in a fully partitioned
enclosure are either thin or with a fixed width or centrally located. In addition, in all of
the earlier studies, low order methods such as finite difference, finite element and finite
volume methods were used to obtain numerical solution of the governing equations,
and in general, low order methods need a large number of grid points to ensure a
reliable accuracy.

In this study, steady state laminar natural convection heat transfer in a
two-dimensional square enclosure divided by a vertical partition of various
thicknesses and conductivities and located centrally or off-centrally is examined
numerically using a polynomial-based differential quadrature (PDQ) method.

2. Differential quadrature method
The differential quadrature (DQ) method (Shu, 1992, 2000; Belman et al., 1972; Bellman,
1973) is an efficient discretization technique to obtain accurate numerical solutions
using considerably small number of grid points. In the DQ method the derivative of a
function is approximated by a weighted linear sum of the function values at given grid
points. The weighting coefficients do not relate to any special problem and only depend
on the grid spacing. Thus, any differential equation can be reduced to a set of algebraic
equations using these coefficients. One essential issue pertaining to the method is how
to compute the weighting coefficients. In the DQ method, the first and second order
derivatives of f(x) at a point xi are approximated by:

f xðxiÞ ¼
Xn
j¼0

aijf ðxjÞ for i ¼ 0; 1; 2; . . . ; n; f xxðxiÞ ¼
Xn
j¼0

bijf ðxjÞ

for i ¼ 0; 1; 2; . . . ; n

ð1Þ

where n is the number of the grid points, aij and bij are the first and second order
weighting coefficients, respectively. Bellman et al. (1972) proposed two different
techniques to determine the weighting coefficients for the first-order derivatives. While
the first method is implemented by solving a system of algebraic equations, the second
method is realized by a simple algebraic formulation. Since, the grid points can be
chosen arbitrarily, the first method is more popular. Its matrix becomes ill-conditioned
when the number of grid points is large. Therefore, it is very difficult to obtain
weighting coefficients with this method. To overcome this difficulty, Shu and Richards
(1992) proposed a PDQ method for the calculation of the weighting coefficients.

2.1 Polynomial-based differential quadrature method
In the PDQ method, it is supposed that the function f(x) is approximated by an nth
degree polynomial in the form:

f ðxÞ ¼
Xn
k¼0

ckx
k ð2Þ
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Shu and Richards (1992) derived the following explicit formulations to calculate the
weighting coefficients:

aij ¼
M ð1ÞðxiÞ

ðxi 2 xjÞM ð1ÞðxjÞ
; when j – i; aii ¼ 2

Xn
k¼1;k–i

aik ð3Þ

bij ¼ 2aij aii 2
1

ðxi 2 xjÞ

� �
; when j – i; bii ¼ 2

Xn
k¼1;k–i

bik ð4Þ

where:

M ð1ÞðxiÞ ¼
Yn

k¼1;k–i

ðxi 2 xkÞ ð5Þ

When the coordinates of grid points are known, the weighting coefficients for the
discretization of derivatives can be easily calculated from equations (3)-(5).

3. Analysis
A square enclosure that has a vertical partition of a finite thickness with a variable
conductivity is considered in the present study (Figure 1). The temperatures of the
vertical walls are kept at TH and TC. The horizontal walls are assumed to be adiabatic
and both sides of the partition are supposed to obey the conjugate heat transfer
boundary condition.

In order to normalize governing equations, the following dimensionless variables
are used:

x ¼
x
*

L
; y ¼

y
*

L
; xp ¼

x*p
L
; rw ¼

w

L
; rk ¼

kf
kp

ð6Þ

Figure 1.
Geometry and coordinate
system
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u ¼
u
*

a=L
; v ¼

v
*

a=L
; p ¼

L 2

roa2
ð p

*
þ rogy

*
Þ; T ¼

T
*
2 TC

TH 2 TC
ð7Þ

where w is the width of the partition, u* and v* are the dimensional velocity
components, p* is the dimensional pressure, T * is the dimensional temperature, r is
the fluid density and a is the thermal diffusivity of the fluid. The thermal
conductivities of the fluid and of the partition are kf and kb, respectively. The thermal
conductivity ratio and the dimensionless thickness of the partition are rk and rw,
respectively. As shown in detail by Gill (1966), the scaling equations (6) and (7) is based
on the balance between the convective and conductive terms in energy equation, and
on the balance between the buoyancy and diffusion terms in momentum equation.

The fluid is assumed to be incompressible with constant properties in the present
study. The buoyancy effects are incorporated to the formulation by invoking the
Boussinesq approximation. The viscous dissipation terms and the thermal radiation
are neglected. With the foregoing assumptions, the dimensionless governing equations
for the two dimensional steady state case can be stated as follows in the
vorticity-stream function formulation:

›2c

›x 2
þ

›2c

›y 2
¼ 2v ð8Þ

u
›v

›x
þ v

›v

›y
¼ Pr

›2v

›x 2
þ

›2v

›y 2

� �
þ RaPr

›T

›x
ð9Þ

u
›T

›x
þ v

›T

›y
¼

›2T

›x 2
þ

›2T

›y 2
ðfor the fluidÞ

›2T

›x 2
þ

›2T

›y 2
¼ 0 ðfor the partitionÞ

ð10Þ

Here the Prandtl and Rayleigh numbers are defined as:

Pr ¼
y

a
; Ra ¼

gbL 3DT
*

ya
ð11Þ

where g is the gravitational acceleration, b is the coefficient of thermal expansion and y
is the kinematic viscosity of the fluid. DT* is the temperature difference between the
vertical walls of the enclosure.

The dimensionless stream function and vorticity in equations (8) and (9) are defined
as follows:

u ¼
›c

›y
; v ¼ 2

›c

›x
; v ¼

›v

›x
2

›u

›y
ð12Þ

The appropriate boundary conditions for the governing equations are:

cðx; 0Þ ¼ 0;
›T

›y

����
x;0

¼ 0; cðx; 1Þ ¼ 0;
›T

›y

����
x;1

¼ 0 ð13Þ
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cð0; yÞ ¼ 0; Tð0; yÞ ¼ 1; cð1; yÞ ¼ 0; Tð1; yÞ ¼ 0 ð14Þ

cðxp 2 0:5rw; yÞ ¼ 0;
›Tp

›x

����
xp20:5rw;y

¼ rk
›T

›x

����
xp20:5rw;y

ð15Þ

cðxp þ 0:5rw; yÞ ¼ 0;
›Tp

›x

����
xpþ0:5rw;y

¼ rk
›T

›x

����
xpþ0:5rw;y

ð16Þ

There is no physical boundary condition for the value of the vorticity on a solid
boundary. However, an expression can be derived from the stream function equation as
vwall ¼ 2›2c=›h 2; where h is the outward direction normal to the surface.

In equations (8)-(16), four governing parameters appear: the Rayleigh number
Ra, the partition location xp, the partition thickness rw and the thermal conductivity
ratio rk.

The heat transfer results are expressed in the form of the local Nusselt number
defined as:

Nu ¼ 2
›T

›h

����
h¼0

ð17Þ

4. Numerical procedure
As equations (8)-(10) are coupled and nonlinear partial differential equations, they are
solved numerically. The PDQ method with the non-uniform Chebyshev-Gauss-Lobatto
grid point distribution given below is used to transform the governing equations into a
set of algebraic equations:

xi ¼
1

2
1 2 cos

i

nx
p

� �� �
; i ¼ 0; 1; 2; . . . ; nx; yj ¼

1

2
1 2 cos

j

ny
p

� �� �
;

j ¼ 0; 1; 2; . . . ; ny

ð18Þ

The points in this grid system are more closely spaced in regions near the walls where the
higher velocity and temperature gradients are expected to develop. After the numerical
discretization, the resulting algebraic equations are solved by the successive
over-relaxation iteration method. In order to avoid divergence in the solution of
the vorticity equations, an under-relaxation parameter is employed. The convergence
criteria is chosen as jRjmax # 1026; where jRjmax is the maximum absolute residual
values for the vorticity, stream function and temperature equations.

A grid independence study is conducted using five different grid sizes of 21 £ 21,
26 £ 26, 31 £ 31, 36 £ 36, 41 £ 41 and it is observed that a further refinement of
grid from 36 £ 36 does not have a significant effect on the results in terms of the
average Nusselt number. The results in the case of Ra ¼ 106, xp ¼ 0.5, rw ¼ 0.1,
rk ¼ 1022 are shown in Table I. Based on this observation; a non-uniform grid of
41 £ 41 points is used in this study.

In order to validate the numerical code, the predictions for a non-partitioned square
enclosure are compared with the benchmark results of de Vahl Davis (1983) through a
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standard finite-difference method. The results presented in Table II show that there is
an excellent agreement between the results of the present PDQ method for grid
41 £ 41 and the benchmark results of Vahl Davis [1,2], which are based on low order
methods for grids up to 81 £ 81.

5. Results and discussion
Computations are carried out for air as working fluid with a Prandtl number of 0.71.
The effect of Rayleigh number is investigated in the range between 104 and 106. The
effect of the thermal conductivity ratio is studied by considering the values between
100 and 1023. Three different values (i.e. 0.1, 0.2, 0.3) are taken for the thickness of the
partition. The five different values selected for the location of the partition are 0.1, 0.2,
0.3, 0.4, 0.5.

The results presented below include representative streamline and isotherm
patterns; the temperature along the partition; and the local and average Nusselt
numbers along the hot surface.

5.1 Streamline and isotherm patterns
Figures 2-4 show the streamlines and isotherms for the case where the partition is in
the middle of the enclosure for various values of the thermal conductivity ratio. As it
may be observed that, the flow pattern in both regions of the enclosure is characterized
by a single cell. The hot fluid particles rise along the hot walls because of buoyancy
forces until they reach near the top wall where they turn towards the cold walls while
they are cooled. Then they turn downward near those walls. Finally, the restriction
imposed by the bottom wall forces the fluid particles to turn towards the hot walls. The
flow paths are completed as the colder fluid particles are entrained to the ascending
flows. For Ra ¼ 104, circulation is so weak that the viscous forces are dominant over
the buoyancy forces. This causes the conduction to be dominant heat transfer
mechanism inside the enclosure. The development of boundary layer flow regime with

Hot wall Partition wall Cold wall
Grid pattern Nua Nua Nua

21 £ 21 3.85 3.90 3.85
26 £ 26 3.88 3.90 3.88
31 £ 31 3.90 3.92 3.90
36 £ 36 3.92 3.92 3.92
41 £ 41 3.92 3.92 3.92

Table I.
Effect of the grid size for

Ra ¼ 106, xp ¼ 0.5,
rw ¼ 0.1 and rk ¼ 1022

Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

Vahl Davis Present Vahl Davis Present Vahl Davis Present

cmax – 5.07 9.61 9.57 16.75 16.76
Nua 2.24 2.24 4.52 4.52 8.80 8.82
Numax 3.53 3.53 7.72 7.71 17.93 17.53
Numin 0.59 0.59 0.73 0.73 0.99 0.98

Table II.
Validation of the

numerical code
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Figure 2.
The streamlines and
isotherms for xp ¼ 0.5,
rw ¼ 0.1, rk ¼ 1
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Figure 3.
The streamlines and
isotherms for xp ¼ 0.5,
rw ¼ 0.1, rk ¼ 0.1
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an increasing Rayleigh number is clearly illustrated by the increasing steepness of the
temperature profile near the vertical walls, as well as the formation of a plateau in the
core region of the two fluid layers. As the thermal conductivity ratio is decreased, an
increase in the circulation strength of both regions of the enclosure is seen. However,
this effect of the thermal conductivity ratio on the flow diminishes as the thermal
conductivity ratio gets lower values.

The effect of the partition thickness on the streamlines and isotherms is shown in
Figures 4 and 5. As the partition thickness increases, the circulation strength in both
regions decreases to a certain extent due to the narrowing of the flow regions,
particularly in the case of low Rayleigh numbers. Distortion in the isotherms also
declines to a certain extent in connection with the weakening of the circulation
strength.

The streamlines and isotherms for the different partition locations are shown in
Figures 4, 5 and 7. Placing the partition the same distance from the cold wall as from
the hot wall yielded nearly the same results, only those for xp # 0.5 are presented. As it
can be seen, when the partition is drawn near the hot wall, the circulation strength
weakens in the smaller region. This case indicates that the conductive effect increases
in this smaller region. The larger region, however, experiences an increased circulating
strength. This phenomenon indicates that the convection effect increases in this region
(Figures 6 and 7).

5.2 Partition temperature
The vertical temperature distribution in the middle of the partition is shown in
Figure 8(a) for various values of the Rayleigh number. The lower part of the partition is
washed by the fluid cooled by the cold wall, while the upper part receives the heated

Figure 4.
The streamlines and

isotherms for xp ¼ 0.5,
rw ¼ 0.1, rk ¼ 0.01

-0.2

-0.2

-0.2

-0.4

-0.4

-0.4 -0.6

-0.6

-0.8

-0.8 -1.0

0.0

0.0

0.0

0.0-0.2

-0.2

-0.2

-0.4

-0.4

-0.4 -0.6

-0.6

-0.8

-0.8 -1.0

-1

-1

-1

-2

-2

-2

-3

-3

-4

-4

-5

-5 -6

-4-3-2
-1

0

0

0

0
-1

-1
-1

-2

-2

-2

-3

-3

-4

-4

-5

-5
-6

-4-3-2
-1

-2

-2

-2

-4

-4

-4

-6

-6

-6

-8

-8

-8
-10

-10

-12

-12

-8

-4

-2

0

0

0

0

-2

-2

-2

-4

-4

-4

-6

-6

-6

-8

-8

-8
-10

-10

-12

-12

-8

-4

-2

0.1

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.1

0.2

0.5

0.5

0.5 0.2

0.30.4

0.6

0.6

0.6
0.7

0.7

0.7

0.8

0.8

0.9

0.9

0.9

0.7

0.8
0.1

0.10.2

0.2

0.3

0.30.4

0.40.5

0.50.6

0.6

0.7

0.70.8

0.80.9

0.9

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.40.5

0.5

0.50.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

Convection in a
partitioned

enclosure

447



Figure 5.
The streamlines and
isotherms for xp ¼ 0.5,
rw ¼ 0.3, rk ¼ 0.01
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Figure 6.
The streamlines and
isotherms for xp ¼ 0.1,
rw ¼ 0.1, rk ¼ 0.01
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Figure 7.
The streamlines and

isotherms for xp ¼ 0.3,
rw ¼ 0.1, rk ¼ 0.01
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The variation of the

partition temperature for
(a) xp ¼ 0.5, rw ¼ 0.1,
rk ¼ 0.01; (b) xp ¼ 0.5,
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fluid from the hot wall. Therefore, the partition tends to be hotter at the top than at the
bottom. The non-uniformity in the temperature distribution along the partition is the
smallest at Ra ¼ 104 and the largest at Ra ¼ 106. This is expected, since, at Ra ¼ 104,
the natural convection motion is weak and, therefore, the departure of the
partition temperature from conduction value of 0.5 is small. As the Rayleigh number
increases, the convection motion becomes stronger with the boundary layers
developing on the vertical walls. As a result, the departure of the partition temperature
from the conduction value increases.

The dependence of the partition temperature on the thermal conductivity ratio is
shown in Figure 8(b). For the high values of the thermal conductivity ratio, the
conductivity of the partition is relatively small and consequently, a non-uniform
temperature profile is attained along it. As the thermal conductivity ratio is decreased,
heat flows from the top to the bottom of the partition more easily due to the weaker
thermal resistance of the partition, and an almost isothermal temperature profile is
attained along the partition.

The variation of the temperature along the partition is shown in Figure 8(c) for
various partition thicknesses. As the partition thickness increases, it can be observed
that its temperature decreases to a certain extent because of the weakening convective
circulation in both regions of the enclosure.

As it can be seen in Figure 8(d), with an increase in the distance between the hot wall
and partition, an expected decrease of the partition temperature is seen.

5.3 Local Nusselt number
The variation of the local Nusselt number along the hot wall is shown in Figure 9(a) for
various values of the Rayleigh number. It may be observed that the local Nusselt
number is strongly dependent on the Rayleigh number and the heat transfer rate
increases considerably as the Rayleigh number increases. The local Nusselt number
attains its maximum value close to the leading edge of the hot wall. This is expected
since the leading edge of the hot wall is washed by the fluid cooled by the partition. The
temperature of the fluid moving up the hot wall increases and, therefore, the local
Nusselt number decreases as the vertical coordinate increases.

The effect of the thermal conductivity ratio on the local Nusselt number along the
hot wall is seen in Figure 9(b). The partition acts like an isolator for the high thermal
conductivity ratios. As mentioned previously, with the decrease of the
thermal conductive ratio, the thermal resistance of the partition weakens and the
thermal interaction between the regions increases. Thus, the local Nusselt number
begins to increase. When the thermal conductivity ratio is sufficiently decreased, it
reaches degrees that reveal an increase of the temperature in the lower part of the
partition. Thus, the horizontal temperature gradient decreases in the lower part of the
left region, and the local Nusselt number takes lower values in the lower part of the hot
wall.

When analyzing Figure 9(c), in which the variation of the local Nusselt number
along the hot wall is shown for various partition thicknesses, it can be seen that the
partition thickness has little effect on the heat transfer rate.

Figure 9(d) shows the variation of the local Nusselt number along the hot wall for
various values of the partition location. As the distance between the partition and the
hot wall decreases, the local Nusselt number gets lower values and becomes uniform
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since the strength of the convective circulation decreases in the smaller region of the
enclosure.

5.4 Average Nusselt number
The primary quantity of practical interest is the average Nusselt number. Since, the
average Nusselt number at a surface represents the total heat transferred at the
surface, the magnitudes of the average Nusselt number at the hot wall, at the partition
and at the cold wall is identical. Therefore, in the following discussion, the results for
the average Nusselt number are presented only for the hot wall.

Figure 10 shows the variation of the average Nusselt number with the Rayleigh
number for various values of the partition location. In comparison to the
non-partitioned case, the results indicate that the vertical partition reduces the
convective heat transfer up to 57 percent in the range of Rayleigh number taken into
consideration.

The effect of the partition location on the average Nusselt number is shown in
Figure 11 for various values of the Rayleigh number. As the distance between the
partition and the hot wall increases, the average Nusselt number begins to decrease,
and gradually approaches a nearly constant value towards the centre of the enclosure.
This trend is similar to that reported numerically in the past by Tong and Gerner
(1986). As it may be observed from Figure 11, with a decrease in the Rayleigh number,
the effect of the partition location becomes less significant. This is because, at the low

Figure 9.
The variation of the local

Nusselt number for
(a) xp ¼ 0.5, rw ¼ 0.1,
rk ¼ 0.01; (b) xp ¼ 0.5,

rw ¼ 0.1, Ra ¼ 100,000;
(c) xp ¼ 0.5, rk ¼ 0.01,

Ra ¼ 100,000; (d) rw ¼ 0.1,
rk ¼ 0.01, Ra ¼ 100,000
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Rayleigh numbers, the heat transfer mechanism is conduction-dominated and,
therefore, the effect of the partition location is not so important as that at the high
Rayleigh numbers. Furthermore, at the high Rayleigh numbers, the effect of the
partition location becomes less significant as the partition gets closer to the centre of
the enclosure. For example, the average Nusselt numbers with the partition location
from xp ¼ 0.2 to 0.5 are almost of the same values for Ra ¼ 106. This is because the
convection strength does not change significantly for those values of the partition
location.

Figure 12 shows the variation of the average Nusselt number with the thermal
conductivity ratio for different values of the Rayleigh number. As the thermal
conductivity ratio decreases, the average Nusselt number shows a significant increase
and a peak point is detected. Beyond the peak point, the average Nusselt number begins
to decrease and eventually approaches a constant value. For the high values of the
thermal conductivity ratio, the energy within the system is transported from the right to
the left almost exclusively by conduction. As the thermal conductivity ratio decreases,
convection in each fluid layer is favored and consequently the average Nusselt number

Figure 10.
The variation of the
average Nusselt number
with the Rayleigh number
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begins to increase. In the event that the thermal conductivity ratio is decreased by more
than a certain extent, there is a decrease of the horizontal temperature gradient
in the lower part of the left region due to an increase of the temperature in the lower part
of the partition. Thus, the increasing trend appearing in the average Nusselt number
depending upon the decreasing thermal resistance of the partition gives its place to the
decreasing trend.

It may be observed from Figure 13 that the partition thickness has little effect on the
average Nusselt number in the range of the Rayleigh number taken into consideration.

Various correlations for the average Nusselt number are available in the literature
for the partitioned enclosures. Duxbury (1979) gives one of them, which is for the
isothermal partition, as:

Nua ¼ 0:143Ra 0:25 H

L

� �20:25

ð19Þ

Figure 12.
The variation of the

average Nusselt number
with the thermal

conductivity ratio for
xp ¼ 0.5 and rw ¼ 0.1
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In fact, the partition is not isothermal, and its temperature changes in the vertical
direction due to the thermal stratification of the fluid within both cells divided by the
partition. Nishimura et al. (1998) suggests the following correlation based on
non-isothermal model:

Nua ¼ 0:149Ra 0:25 H

L

� �20:25

ð20Þ

The comparison of the results for the predictions obtained in this study using the PDQ
method with the results for the correlations given above is presented in Table III. The
difference between the results of the present study and the results of the correlations of
Duxbury (1979) and Nishimura et al. (1998) is because of that these correlations are for
a zero width partition and that the correlation of Duxbury (1979) is for an isothermal
partition.

Based on numerical calculations carried out, the following correlation is developed
for calculating the average Nusselt number covering the governing parameters taken
into consideration in this study:

Nua ¼ ð0:115 þ 0:006rk 2 0:023r2
kÞRa

0:256x20:044
p ð21Þ

Since, it is found that the contribution of the thickness of the partition is negligible, the
thickness of the partition is not correlated. As it can be seen from equation (21) that the
corresponding coefficients of developed correlation are similar to the previously
developed correlations. This is because of the fact that the correlations are for similar
configuration.

6. Conclusion
In this study, natural convection in a partitioned enclosure is investigated numerically.
The PDQ method is used for the discretization of the derivatives in the governing
equations and in the boundary conditions. The results show that the presence of a
vertical partition in the enclosure has a considerable effect on the convective
circulation, and hence, the heat transfer characteristics across the enclosure. The
average Nusselt number decreases toward a constant value as the distance between
the hot wall and the partition increases. As the thermal conductivity ratio decreases,
the average Nusselt number increases and a peak point is detected. If the thermal
conductivity ratio decreases to a further extent, the average Nusselt number begins to
decrease. Furthermore, the average Nusselt number exhibits little dependence on the
thickness of the partition in the range taken into consideration in this study for the
thickness of the partition. The present method is validated by comparing its numerical
results for the average Nusselt number with the results of the correlations available in

Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

Present study 1.17 2.08 3.92
Isothermal partition model 1.43 2.53 4.51
Nishimura et al. 1.49 2.64 4.70

Table III.
Comparison of the
average Nusselt number
predictions with the
correlation results given
in the literature
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the literature. In addition, a correlation covering the governing parameters in this
study is developed for the average Nusselt number.

Note

1. A comprehensive overview of the published results is offered by Ostrach (1988) and
Yang (1987).
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